NADPH Redox Regulates L‐type Calcium Channel Activity
نویسندگان
چکیده
منابع مشابه
Glucose-6-Phosphate Dehydrogenase and NADPH Redox Regulates Cardiac Myocyte L-Type Calcium Channel Activity and Myocardial Contractile Function
We recently demonstrated that a 17-ketosteroid, epiandrosterone, attenuates L-type Ca(2+) currents (I(Ca-L)) in cardiac myocytes and inhibits myocardial contractility. Because 17-ketosteroids are known to inhibit glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, and to reduce intracellular NADPH levels, we hypothesized that inhibition of G6PD c...
متن کاملLRRK2 Regulates Voltage-Gated Calcium Channel Function
Voltage-gated Ca(2+) (CaV) channels enable Ca(2+) influx in response to membrane depolarization. CaV2.1 channels are localized to the presynaptic membrane of many types of neurons where they are involved in triggering neurotransmitter release. Several signaling proteins have been identified as important CaV2.1 regulators including protein kinases, G-proteins and Ca(2+) binding proteins. Recentl...
متن کاملRedox regulation of the ryanodine receptor/calcium release channel.
The RyR (ryanodine receptor)/calcium release channel contains a number of highly reactive thiol groups that endow it with redox sensitivity. In general, oxidizing conditions favour channel opening, while reducing conditions have the opposite effect. Thiol modification affects the channel sensitivity to its principal effectors, Ca2+, Mg2+ and ATP, and alters RyR protein interactions. Here, we gi...
متن کاملEvidence for redox sensing by a human cardiac calcium channel
Ion channels are critical to life and respond rapidly to stimuli to evoke physiological responses. Calcium influx into heart muscle occurs through the ion conducting α1C subunit (Cav1.2) of the L-type Ca(2+) channel. Glutathionylation of Cav1.2 results in increased calcium influx and is evident in ischemic human heart. However controversy exists as to whether direct modification of Cav1.2 is re...
متن کاملInsulin receptor regulates photoreceptor CNG channel activity.
Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr(498) and Tyr(503) residues on CNGA1 that are situated at t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The FASEB Journal
سال: 2006
ISSN: 0892-6638,1530-6860
DOI: 10.1096/fasebj.20.4.a328-d